

Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères

Astrophysique de laboratoire appliquée à la désorption thermique et photo-induite de glaces moléculaires

Mathieu Bertin

R. Dupuy, G. Féraud, C. Romanzin, L. Philippe, T. Putaud, X. Michaut, P. Jeseck, J.-H. Fillion

Les glaces astrophysiques: observations, modèles, expériences de laboratoires 03 octobre 2019

Nuages moléculaires

Température 10 - 100 KDensité $10^2 - 10^5 \text{ cm}^{-3}$

Disques protoplanétaires Température 10 – 300 K Densité 10⁶ - 10¹⁵ cm⁻³

IM Lup

-1.0

ALMA image of TW Hydrae Andrews et al 2016, ApJ, 820, L40

SPHERE image of the IM Lup disk Avenhaus et al 2018, arXiv:1803.10882 Dans les régions de basse températures (~ 10 - 100K)

Les espèces moléculaires se forment ou s'accrètent à la surface des grains Principalement H₂O CO, CO₂ et méthanol

Les glaces sont le réservoir principal de matière moléculaire des milieux froids

Motivations: molecules dans le Milieu Interstellaire froid

Région Rho Ophiuchus

Spectre Sub-mm vers la protoétoile binaire par l'IRAM 30m (Caux et al 2005) Région Rho Ophiuchus

Phase gazeuse

A proximité de sources thermiques - hot cores/corinos, PDRs... -H₂O, CO₂, ... et beaucoup de molécules « complexes »: HCOOCH₃, CH₃CN, (CH₃)₂O...

Frequency (GHz)

Motivations: molecules dans le Milieu Interstellaire froid

Phase gazeuse

A proximité de sources thermiques - hot cores/corinos, PDRs... -H₂O, CO₂, ... et beaucoup de molécules « complexes »: HCOOCH₃, CH₃CN, (CH₃)₂O...

Dans les régions froides (10 K) - Disques protoplanétaires, low UV flux PDR, cœurs denses -Molécules simples (H₂O, CO...) et « complexes » également détectées

Willacy & Langer 2000 Guzman et al., 2011 Bacmann et al. 2012 Walsh et al. 2016 Vastel et al. 2014 Favre et al. 2018

 H_2CO and CH_3OH observés dans la nébuleuse de la tête de cheval Guzman et al. 2011, 2013

...

Contraindre la physico-chimie dans les milieux froids implique de comprendre et de quantifier précisément les processus d'échange entre le solide et le gaz

Motivations: l'instrument SPICES

(CO, N₂...)

Equation de Polanyi-Wigner (*Redhead, Vacuum 1962*) Flux de désorption Φ $\Phi(T) = -\frac{d\theta}{dt} = \mathbf{v} \,\theta^{\mathbf{n}} \, e^{-\frac{\mathbf{E}_{\mathbf{a}}}{kT}}$ Glace **E**_a: Energie de liaisons/énergie d'adsorption/désorption moléculaire @ T **n** : Ordre cinétique de la désorption *Taux de couverture de molécules :* $\theta(t)$ $\boldsymbol{\nu}$: Facteur pré-exponentiel $(\theta = 1 : 1 \text{ monocouche saturée})$ Fonction de partition de la Théorie de l'état de transition : $v_{TST} = \frac{kT}{h} \frac{q_{\#}}{q_{ads}}$ molécule dans le gaz Fonction de partition de la molécule adsorbée Tielens & Allamandola 1987 Müller et al. 2003, Tait et al. 2005 Hasegawa & Herbst 1993 Les ν mesurés peuvent atteindre 10²⁰ s⁻¹ pour $\nu = \sqrt{\frac{2\sigma E_a}{\pi^2 m}} \approx 10^{12} - 10^{13} \, s^{-1}$ des molécules plus grandes (CH₃CH₂COOH...): besoin d'une meilleure caractérisation de ν pour les espèces organiques Fonctionne bien pour les petites molécules

Désorption thermique : Quantifier la désorption thermique

• But: Accéder à des valeurs solides pour les paramètres de désorption thermique

Flux de désorption :
$$\Phi(T) = -\frac{a\sigma}{dT} = \frac{1}{\beta} \mathbf{v} \, \theta^{\mathbf{n}} \, e^{-\frac{La}{kT}}$$

Désorption thermique : Quantifier la désorption thermique

• Systèmes : adsorption de molécules sur des substrats d'intérêt astrophysique

Surfaces carbonées : HOPG Surfaces silicatées : Quartz

Substrat froid (T < 90 K)

Substrat froid (T < 90 K)

Grains « nus »

Manteau glacés

Taux de couverture des adsorbats : < 1 ML

• Le cas des couvertures faibles (< 1ML): Approximation au premier ordre

$$\Phi(T) = \frac{1}{\beta} \mathbf{v} \,\theta(T) \, e^{-\frac{\mathbf{E}_a}{kT}}$$

• Limites de l'approximation au premier ordre: *toutes les molécules ne sont pas équivalentes sur la surface*

On peut traiter ce problème en considérant une collection de molécules présentant des énergies d'adsorption différentes

L'énergie d'adsorption ne dépend pas a priori des conditions expérimentales

Le couple ν , E_a peut être déterminé à partir de plusieurs courbes TPD réalisées à des β différents

Désorption thermique: Systèmes étudiés jusqu'à présent...

Adsorbate	Substrate	Experimental data			Theoretical data
		u	E_{ads}	δE_{ads}	E_{ads}
$\operatorname{Ar}^{(a,b)}$	Crystalline water	$3 imes 10^{10 \pm 0.5}$	75	10	66-119*
	Amorphous water	$3 imes 10^{10 \pm 0.5}$	85	20	—
$\operatorname{Kr}^{(a,b)}$	Crystalline water	$2 \times 10^{12 \pm 0.5}$	130	20	97-153*
	Amorphous water	$2 \times 10^{12 \pm 0.5}$	125	13	—
$\mathrm{Xe}^{(a,b)}$	Crystalline water	$8 \times 10^{12 \pm 0.5}$	175	16	101-187*
	Amorphous water	$8 imes 10^{12 \pm 0.5}$	175	16	-
$CH_3OH^{(b,c)}$	Graphite	$8 imes 10^{16 \pm 0.5}$	470	40	
	$CH_{3}OH$ (multilayer)	$5 imes 10^{14}$	420	_	-
$\mathrm{CH}_3\mathrm{CN}^{(b,d,e)}$	Crystalline water	$10^{18\pm0.5}$	565^{*}	50	558
	Amorphous water	$2 \times 10^{17 \pm 0.5}$	530^{*}	30	-
	Graphite	$8 imes 10^{17\pm0.5}$	440	50	$275 - 480^{\ddagger}$
	Quartz	$10^{17 \pm 0.5}$	460	60	460
	CH_3CN (multilayer)	10^{13}	390	_	—
$\mathrm{CH}_3\mathrm{NC}^{(b,d,e)}$	Crystalline water	$10^{18\pm0.5}$	540*	30	545
	Amorphous water	$5 imes 10^{16\pm0.5}$	490*	25	-
	Graphite	$2 imes 10^{16 \pm 0.5}$	430	50	$255 - 440^{\ddagger}$
	Quartz	$3 imes 10^{17 \pm 0.5}$	430	50	414
	CH_3NC (multilayer)	$5 imes 10^{12}$	330	_	-
$CH_{3}COOH^{(f,g)}$	Crystalline water	$10^{15^{\dagger}}$	> 500	_	702
	Amorphous water	10^{15}	> 500	_	_
$\operatorname{HCOOCH}_{3}^{(f,g)}$	Crystalline water	$10^{15^{\dagger}}$	390	_	399
	Amorphous water	$10^{15^{\dagger}}$	380	_	—
$\mathrm{HCCCHO}^{(h)}$	Crystalline water	$2 \times 10^{19 \pm 0.5}$	495	_	-
	HCCCHO (multilayer)	$6 imes 10^{13}$	370	_	-

Résultats des calculs de DFT périodique par Y. Ellinger, F. Pauzat & A. Markovitz

Doronin et al., J Chem Phys 2015 ; Bertin et al. A&A 2017 a&b, Bertin et al. JPhysChemC 2010

Photodésorption : Approche résolue en longueur d'onde des photons

Fayolle et al. ApJ 2011, Bertin et al. PCCP 2012

- Désorption induite par transition électronique dans la glace DIET
 Forte dépendance en énergie
 Pas de rôle mesurable du susbtrat
- Efficacité négligeable à la Ly-α

Rendements mesurés à l'aide des lampes à décharge étaient dus à d'autres composantes spectrales de la lampe

Bertin et al. ApJ 2013 Dupuy et al. A&A 2017

CH4 P hotodes orption rate (molecules/photon)

Bertin et al. ApJ 2013 Dupuy et al. A&A 2017 Dupuy et al. In prep.

Au, 10K

Glace de H₂O

Mélange ¹³CO:¹⁵N₂ HOPG, 10K

Bertin et al. ApJ 2013 Dupuy et al. A&A 2017 Dupuy et al. In prep.

 Rendement de photodésorption dépend de la composition de la glace

> Rendements obtenus à partir des glaces pures ne sont probablement pas adaptés aux échanges gaz-grains dans les modèles astrochimiques

 Processus induit par CO & H₂O semblent être un candidat prometteur pour promouvoir la désorption de co-adsorbats dans les glaces interstellaires

> Un voie possible à la photodésorption d'espèces organiques, supposées formées à partir de l'hydrogénation de CO dans les glaces ?

Au, 10K

Photodésorption: le cas des molécules organiques

Photodésorption: le cas des molécules organiques

• Pas d'effet clair de la matrice de CO : fragments direct de dissociation.

Bertin et al. ApJ 2016

Photodésorption: le cas des molécules organiques

- Pas d'effet clair de la matrice de CO : fragments direct de dissociation.
- Dilution dans CO abaisse la photodésorption du méthanol intacte
- Désorption induite par CO n'est pas effective dans ce cas

Photodésorption: Conclusions sur la photodésorption UV

• Photodésorption UV dépend de l'énergie des photons et de la composition des glaces

Rendements obtenus à partir des glaces pures sont probablement pas adaptés à la modélisation de la photodésorption dans le MIS

- Dans le cas de mélanges simples, l'espèce majoritaire est susceptible de dominer le processus par phénomène de désorption indirecte
- La photodissociation joue un rôle prépondérant dans la photodésorption, en particulier dans le cas d'espèces organiques

Efficacité des processus indirects dépend du co-adsorbat

Par exemple, la désorption assistée par CO est efficace dans le cas de mélanges formaldéhyde:CO (*Féraud A&A 2019*)

La génération et désorption de photofragments peut constituer une piste pour la reformation des organiques en phase gazeuse

Photodésorption: Photodésorption dans le domaine des rayons X

Photodésorption dans les plus courtes longueurs d'onde : Rayonnements présents e.g. dans les disques, et plus pénétrants que les UV

Rendements peu contraints expérimentalement, en particulier pour les neutres

Dupuy et al. Nature Astronomy 2018

 $(H_2O)_nH+$

Photodésorption: Photodésorption X dans les glaces de H₂O

Dupuy et al. Nature Astronomy 2018

Photodésorption: Photodésorption X dans les glaces de H₂O

Taux expérimentaux extrapolés à 10 keV TW Hya surface TW Hya N = 10^{21} cm² 0.01 Extrapolated yields (H₂O molecules/photon) 0.01 TW Hya N = 10^{22} cm² TW Hya N = 10^{23} cm² Normalized photon flux (a.u.) TW Hya N = 10^{24} cm² 1E-3 1E-3-1E-4 1E-4 1E-5 1E-5 1E-6 1E-6 1000 10000 1000 10000 Photon energy (eV) Photon energy (eV) Average photodesorption yield $2.3\pm1.2\times10^{-3}$ TW hydrae spectrum $n_H = 10^{21} \text{ cm}^2$ $2.5\pm1.3\times10^{-3}$ $n_H = 10^{22} \text{ cm}^2$ $1.2\pm0.6\times10^{-3}$

Spectres dans les X « mous » dans les disques protopléntaires

Dupuy et al. Nature Astronomy 2018

Taux de photodésorption comparables aux UV

 $1.2\pm0.6\times10^{-4}$

 $1.2\pm0.6\times10^{-5}$

 $n_H = 10^{23} \text{ cm}^2$

 $n_H = 10^{24} \text{ cm}^2$

Photodésorption: Photodésorption X dans les glaces de H₂O

Spectres dans les X « mous » dans les disques protopléntaires

- Rayons X comme voie de photodésorption d'espèces complexes ? Etudes de glaces mixtes, comportant les espèces majoritaires et des organiques co-adsorbées
- Rôle des photoélectrons (Auger, électrons secondaires...)

Etudes systématiques des mêmes systèmes à l'aide d'électronsd'énergie contrôléeCollaboration Anne Lafosse (ISMO – Orsay)

Supports

Labex MiChem

Programme national PCMI

DIM – Astrophysique et Conditions d'Apparition de la Vie

¥ACAV

*** île**de**France**