Stability of PAH clusters

Sébastien Zamith, Ming-Chao Ji, Jean-Marc L'Hermite, Christine Joblin,

Léo Dontot, Mathias Rapacioli and Fernand Spiegelman

European Research Council Established by the European Commission

Stability of PAH clusters

PAH clusters as models for carboneous nanograins.

Destruction of such nanograins: route for formation of large complex PAHs?

Zhen et al. *ApJ* 863 128 (2018)

Delaunay et al, J. Phys. Chem. Lett., 6, 1536-1542 (2015)

Are these PAH clusters stable?

Stability of PAH clusters

- Cationic pyrene clusters $(Py)_n^+$ studied using
- Mass spectrometry techniques and
- Phase Space Theory to deduce
- Dissociation energies

PAH = polyaromatic hydrocarbons

Outline

- Experimental setup
- Experimental results
- Phase Space Theory
- Dissociation energies
- Conclusion

Experimental setup initially designed to perform collisions between mass selected clusters and atomic or molecular vapor (attachment cross-section, fragmentation cross-section, nanocalorimetry, ...).

Can also be used to observe the **spontaneous thermal evaporation of mass selected clusters**.

• Gaz aggregation source

Cluster production

Cluster production

Cluster production

0

• Gaz aggregation source, n = 1-40

• Thermalization : T = 25-300 K

Large number of collisions with the helium buffer gaz

Canonical distribution of internal energies E_i

• Transfer to the high vacuum part

Internal energies E_i , microcanonical evolution

• Mass selection and slowing down

Internal energies E_i , microcanonical evolution

• Free flight

Internal energies E_i , microcanonical evolution

ToF (µs)

Evolution of the mass spectra of mass selected clusters with initial temperature.

As the temperature is raised, appearance of fragments due to evaporation

Ratio I/I_o I = parent peak intensity I_o = sum of parent + fragment peaks

Example: $(Py)_{11}^{+}$ @ 22 eV

At the thermalizer exit:

- Cluster size distribution
- Canonical distribution of internal energies E_i

After the propagation time t1, the population of size n will have contributions from the evaporation of larger sizes:

$$n+1, E_i \rightarrow n, E'_i$$

At the thermalizer exit:

- Cluster size distribution
- Canonical distribution of internal energies E_i

After t1, population of size n might no longer be at temperature T

 \Rightarrow new, non-canonical, distribution of internal energies

At the thermalizer exit:

- Cluster size distribution
- Canonical distribution of internal energies E_i

Depending on where evaporation takes place, it might not be observed.

Experimental results reproduced by simulating the propagation in the setup with evaporation probabilities evaluated at each time step

 \Rightarrow Model for evaporation rates

PST evaporation rates

Ingredients of the Phase Space Theory:

- initial internal energy of the parent E_i
- density of states of the parent N(E)
- total number of states of the fragments G(E,J)
- conservation of angular momentum

$$W(E_i, J) = \frac{G(E_f, J)}{h(2J+1)N(E_i)} \qquad E_f = E_i + E_{rot} - D$$
$$E_{rot} = B_0 J(J+1)$$

Approximations:

- only vibrational harmonic frequencies considered
- all species considered as spherical tops
- ion-polar interaction between the neutral fragment and the charged cluster

Energy partition among the fragments

Harmonic frequencies and moments of inertia from DFTB calculation (cf Rapacioli *et al.*)

PST evaporation rates

Ingredients of the Phase Space Theory:

- initial internal energy of the parent E_i
- density of states of the parent N(E)
- total number of states of the fragments G(E,J)
- conservation of angular momentum

$$W(E_i, J) = \frac{G(E_f, J)}{h(2J+1)N(E_i)}$$

Only one adjustable parameter

$$E_{f} = E_{i} + E_{rot} - D$$
$$E_{rot} = B_{0}J(J+1)$$

Approximations:

- only vibrational harmonic frequencies considered
- all species considered as spherical tops
- ion-polar interaction between the neutral fragment and the charged cluster

Energy partition among the fragments

Harmonic frequencies and moments of inertia from DFTB calculation (cf Rapacioli *et al.*)

PST evaporation rates

Generate initial population of size n (cascaded evaporations \Rightarrow use of dissociation energies of sizes n+1, n+2, ...) (t1)

Calculate clusters trajectories with evaporation probabilities (t2, t3, t4)

Generate TOF mass spectra vs initial temperature

Compare with experiment, adjust dissociation energy

Black squares: values deduced from the reproduction of the experimental curves using PST

Black squares: values deduced from the reproduction of the experimental curves using PST Only lower limit for n=2

Black squares: values deduced from the reproduction of the experimental curves using PST Only lower limit for n=2

Black squares: values deduced from the reproduction of the experimental curves using PST Only lower limit for n=2

Black squares: values deduced from the reproduction of the experimental curves using PST Only lower limit for n=2

Black squares: values deduced from the reproduction of the experimental curves using PST Only lower limit for n=2

Red triangles: DFTB calculation (cf Rapacioli et al.)

Conclusion

• We have observed the thermal evaporation of pyrene clusters, n=2-40

• Experimental results successfully reproduced using PST

• Dissociation energies deduced, in good agreement with theory and bulk value

Conclusion

 Apart from the dissociation energy, no free parameters for the PST. Too good to be true?

• At least, effective evaporation rates are obtained

Conclusion

• Preliminary data on CID cross-section measurements: dissociation energies compare well with evaporation data.

