

◆□▶▲□▶▲□▶▲□▶ □ ● ●

Contribution of the DFTB scheme to the modeling of water clusters

Aude Simon

Laboratoire de Chimie et Physique Quantiques (LCPQ) Group "Modeling, Aggregates, Dynamics" (MAD) Univ. Toulouse & CNRS, France

Atelier glaces, GDR EMIE-PN PCMI, 3-4 octobre 2019, Paris

Application : exploration of PES

Conclusion

Collaborators

MAD group :

- Jérôme Cuny
- Mathias Rapacioli
- Fernand Spiegelman
- Eric Michoulier
- Kseniia Korchagina
- Luiz Oliveira
- Christophe Iftner

- Céline Toubin (PhLAM, Lille)
- Jennifer Noble (PIIM, Marseille)
- Joëlle Mascetti (ISM, Bordeaux)

1 Introduction

- Method : SCC-DFTB for molecular clusters
- Application : exploration of PES

Conclusion

Introduction	
•0	

Application : exploration of PES

Conclusion

Which systems?

- Pure water clusters (small : benchmark)
- In interaction with PAHs : clusters/ice

• Solvating impurities : proton, sulfate

Introduction	Method : SCC-DFTB for molecular clusters
0●	000000

Conclusion

Properties of water clusters

Complex potential energy surfaces : many isomeric structures

- Intermolecular interactions : hydrogen bonds, a challenge to describe
- Methods : DFTB + molecular dynamics (MD)

Equilibrium properties : structures, energetics, IR spectra, thermodynamics

Introduction

2 Method : SCC-DFTB for molecular clusters

3 Application : exploration of PES

Conclusion

Introduction	
00	

Application : exploration of PES

Conclusion

The SCC-DFTB scheme : an approximate DFT method

 Self-Consistent-Charge Density Functional based Tight Binding (SCC-DFTB) method (*Elstner PRB 2008*) : parameterized functions and integrals, and reduced basis sets.

 Modifications of the SCC-DFTB hamiltonian to describe large molecular clusters (~ 1000 atoms) (*Rapacioli et al. Phys. Stat. Solid. B 2012*) Introduction 00 Method : SCC-DFTB for molecular clusters 00000 Application : exploration of PES

Conclusion

The SCC-DFTB scheme : an approximate DFT method

(1) Development of the Kohn-Sham energy up to the 2^{nd} order around ρ_0 :

$${m E}^{SCC-DFTB} = \sum_{i}^{occ} n_i \langle \psi_i | \hat{h}[
ho_0] | \psi_i
angle + {m E}^{rep}(
ho_0) + rac{1}{2} \sum_{lphaeta} \gamma_{lphaeta}({m R}_{lphaeta}) \delta {m q}_lpha \delta {m q}_eta$$

* q : Mulliken charges in the initial SCC-DFTB scheme

* $E^{rep}(\rho_0)$, $\gamma_{\alpha\beta}(R_{\alpha\beta})$, $\langle \phi_{\mu} | \phi_{\nu} \rangle$ and $\langle \phi_{\mu} | \hat{h}[\rho_0] | \phi_{\nu} \rangle$ (Slater-Koster integrals) : analytically parametrized functions.

(2) Molecular orbitals : minimal (valence) linear combinations of atomic orbitals ϕ_{μ} :

$$\psi_i = \sum_{\mu} c_{i\mu} \phi_{\mu}$$

(3) All three-center contributions are neglected in the Kohn-Sham matrix.

Introductio	n
00	

Application : exploration of PES

Modifications of the SCC-DFTB hamiltonian to describe molecular clusters

• Dispersion Interactions ((PAH)₂, Rapacioli et al. JCP 2009)

$$V_{ ext{disp}} = -\sum_{i
eq j} f_{ ext{damp.}}(R_{ ext{ij}}) rac{C_6^{ ext{ij}}}{R_{ ext{ij}}^6}$$

- Alternative to Mulliken charges
 - CM3 charges (charges Model 3 Li et al. JPCA 1998, Winget et al. JPCA 2002)

$$q_k^{\textit{CM3}} = q_k^{\textit{Mull}} + \sum_{k'
eq k}^{\textit{atomes}} D_{Z_k Z_{k'}} B_{kk'}$$
 ($B_{kk'}$ Mayer's bond order)

Improvement of :

- Dipole moments (Simon et al. PCCP 2012) \rightarrow IR spectra (Joalland et al. JPCA 2010)
- Long range electrostatic interactions : PAH clusters (*Rapacioli et al. JCP 2009*), water clusters (*Simon et al. PCCP 2012, JCP 2013, CTC 2014*)

Introduction	٦
00	

Application : exploration of PES

Modifications of the SCC-DFTB hamiltonian to describe molecular clusters

- Dispersion Interactions
- Alternative to Mulliken charges
 - CM3 charges

$$q_k^{CM3} = q_k^{Mull} + \sum_{k'
eq k}^{atomes} D_{Z_k Z_{k'}} B_{kk'}$$
 ($B_{kk'}$ Mayer's bond order)

Improvement of :

- Dipole moments
- Long range electrostatic interactions

Example : Bond dissociation energies (kcal/mol)

	$C_6H_6-H_2O$	$H_2O - H_2O$
DFTB Mull.	1.4	1.7
DFTB CM3	2.6	3.1
Ref. Th. WF	2.17	3.11
Ref. Exp.	2.4-2.9	3.15-3.16

イロト イポト イヨト イヨト 二日

Introduction	
00	

Application : exploration of PES

Modifications of the SCC-DFTB hamiltonian to describe molecular clusters

- Dispersion Interactions
- Alternative to Mulliken charges
 - CM3 charges

- "Weighted" Mulliken Charges (*Michoulier et al. PCCP 2018, 20, 11941*), a simpler alternative to CM3 charges

$$\phi_{\mu}(r)\phi_{
u}(r)\simeq rac{1}{2}\mathcal{S}_{\mu
u}((1+t_{\mu
u})|\phi_{\mu}(r)|^2+(1-t_{\mu
u})|\phi_{
u}(r)|^2)$$

Introduction	
00	

Application : exploration of PES

Modifications of the SCC-DFTB hamiltonian to describe molecular clusters

• Alternative to Mulliken charges : benchmark

12/22

Introduction

- 2 Method : SCC-DFTB for molecular clusters
- Application : exploration of PES

Conclusion

Introduction	'n
00	

Application : exploration of PES

Conclusion

Static and dynamic approaches

• Static approach : local optimisation of "populations" of isomers of large systems

Ex. 1 : Diagonalisation of the Hessian matrix : $[\frac{\partial^2 E}{\partial R_{\mu a} \partial R_{\nu b}}]_{eq}$: IR harmonic spectra of several configurations of PAH on ice (cf. talks of C. Toubin & J. Noble)

● On-the-fly Born-Oppenheimer MD/DFTB simulations in the ground electronic state : long runs → toward convergence

Ex. 2 : Autocorrelation functions : finite-temperature effects on IR spectra

Ex. 3 : Replica Exchange Molecular Dynamics (REMD) : heat capacities

Application : exploration of PES

Conclusion

Ex. 1 Vibrations : effect of PAH adsorption on dOH mode Experiments vs calculations (Michoulier et al. JPCC, submitted)

Resonance of dOH mode

(Top : exp., Bottom : theo.)

Pure ASW : black ; + Bz : magenta ; +Anth : blue ; +Pyr : green ; +Cor : red.

Aromatic	δ dOH expt.	δ dOH theo.
Bz	-70	-74
Anth	-78	-79
Pyr	-79	-77
Cor	-84	-85

Good agreement exp./theo. -> cross validation of the approaches

Ex. 2 Finite-temperature IR spectra from BOMD/DFTB

- Local optimization (gradient)
- Born-Oppenheimer MD simulations : (NVT) canonical sampling (a few ps) + (NVE) : ~ 10 simulations of 300 ps to reach IR cross-section convergence
- IR cross sections obtained from the Fourier Transform of the dipole autocorrelation function

$$lpha(\omega) \propto \omega^2 \int_0^{+\infty} \mathrm{d}t \langle \mu(\mathbf{0}).\mu(t)
angle \; \boldsymbol{e}^{i\omega t}$$

Introduction	
00	

Application : exploration of PES

Conclusion

H_2O/Ar in an Ar matrix (H_2O/Ar) : model system

- QM (DFTB)/FF model (Iftner et al. JCP 2014)
- Matrix : finite-size system, organized in a face centered cubic crystalline structure, frozen atoms at the border.
- Experimental IR spectra available (Perchard et al. Chem. Phys. 2001, Michaut et al. Vib. Spect. 2004)

Introduction	Method : SCC-DFTB for molecular clusters	Application : exploration of PES
00	000000	000000

H_2O/Ar (substitution site) : IR spectra at 10 K in line with experimental results

Water IR spectra : gas phase (black), in Ar matrix (428 Ar atoms, red)

H₂O/Ar with H₂O substituting one Ar atom : broadening + shifts in good agreement with experiment (*Perchard et al. Chem. Phys. 2001, Michaut et al. Vib. Spect. 2004*)

Introductio	'n
00	

Application : exploration of PES

Conclusion

Ex. 3 Replica exchange molecular dynamics (REMD)

- N replica with independent trajectories
- Exchange probability (between T_i and T_j , j = i + 1)
- Metropolis criterium : W(C_i-C_j) = min(1, $e^{\Delta E \Delta \beta}$) with $\Delta E = E_i - E_j$ and $\Delta \beta = \frac{1}{k_B T_i} - \frac{1}{k_B T_i}$

PES exploration and thermodynamic data

Introduction	
00	

Application : exploration of PES

Thermodynamics : heat capacities

PAH-(H₂O)₈ : phase change at lower temperature than (H₂O)₈ : PAH surface favors "2D structures" : π_C -H and σ_H -OH₂ interactions

Introduction	١
00	

Introduction

- Method : SCC-DFTB for molecular clusters
- Application : exploration of PES

Introduction	
00	

Summary and outlook

- Bridge the gap between DFT and force field approaches
- Transferability : solvation of a variety of systems
- Review : Simon et al. Mol. Sim. Special Issue, 2019, 45, Issue 4-5 : "Water", 249-268
- Nuclear quantum effects with PIMD (Cuny et al. to be submitted)
- Effect of solvation on electronic excited states with TD-DFTB : static and non adiabatic dynamics (Tully Surface Hopping)
- Liquid phase : modeling of interfaces multiscale approach (PhD N. Cinq 2019-2022)

