

This work took advantage of the collaboration of the **ISSI team** « Comet 67P Surface Composition »

Ammonium salts detected on the surface of comet 67P/Churyumov-Gerasimenko, relics of interstellar ices?

Olivier Poch Post-doc CNES, IPAG, France

I. Istiqomah, E. Quirico, P. Beck, B. Schmitt, P. Theulé, A. Faure, P. Hily-Blant, B. Rousseau, S. Potin,
O. Brissaud, L. Flandinet, L. Bonal, A. Raponi, M. Ciarniello, G. Filacchione, A. Pommerol, N. Thomas,
D. Kappel, V. Mennella, L. Moroz, V. Vinogradoff, G. Arnold, D. Bockelée-Morvan, F. Capaccioni,
M. C. De Sanctis, S. Erard, C. Leyrat, A. Longobardo, F. Mancarella, E. Palomba, F. Tosi

Atelier glaces astrophysiques – Paris, CNES – 4 Octobre 2019

GENERAL CONTEXT

Revealing the physical & chemical properties of planetary surfaces from their remote sensing observations

Planetary surfaces are complex

0.5 mm

Grains sizes, composition, *ice/dust* mixing modalities... Processes: Sublimation, Photolysis...

Need of <u>experimental</u> and theoretical simulations to interpret the observations

OBSERVATION OF COMET 67P NUCLEUS

OBSERVATION OF COMET 67P NUCLEUS

Need of <u>experimental reference spectra</u> to interpret the observation

LABORATORY EXPERIMENTS

Preparation of an analogue of cometary surface

Sublimation of a mixture made of water ice + opaque grains + NH_4^+ HCOO⁻

Porous surface of opaque grains + NH₄⁺ HCOO⁻ Sample in simulation chamber 170-200 K, 10⁻⁶ mbar

Measurements of reflectance spectra

Spectro-goniometer at IPAG

THE SALTY DUST OF COMET 67P

\succ Identification of ammonium NH₄⁺ salt on the nucleus

Sublimation of a mixture made of water ice + opaque grains + NH₄⁺ HCOO⁻

Reflectance spectra

Porous surface of opaque grains + 17 wt% of NH₄⁺ HCOO⁻

10⁻⁶ mbar, 173 K

1

2

3

Poch *et al.*, in revision

Position + assymptric shape + 3.1 + 3.3 μ m absorptions can all be attributed to NH_a⁺ salts \succ

Ammonium salts are the main carriers of the 3.1-µm feature observed on comet 67P

THE SALTY DUST OF COMET 67P

Several anions may be associated to NH₄⁺

Reflectance spectra of sublimate residues

Continuum removed reflectance spectra of sublimate residues

- Several NH₄⁺ salts match the observed spectrum
- > A mixture of different salts may be present on comet 67P

A NEW COMETARY RESERVOIR OF NITROGEN

\succ Nitrogen in comet, before the detection of NH₄⁺ salts

Estimations from data obtained by Rosetta instruments (ROSINA, COSIMA, etc.) Le Roy+ (2015); Rotundi+ (2015); Bardyn+ (2017); Fray+ (2017)

Solar N/C from Lodders (2010)

A New Cometary Reservoir of Nitrogen

Identification of a new reservoir of nitrogen

Do NH₄⁺ salts solve the problem of the missing nitrogen?

Distribution of N in comet 67P

Concentration of NH_4^+ salts of **few % up to about 40 wt%** in the cometary dust.

ORIGINS OF THE AMMONIUM SALTS

Evolution of icy grains, Boogert *et al.* (2015)

How are NH₄⁺ salts formed?

Produced by acid-base reactions (10-30 K):

 $NH_3 + HCOOH \rightarrow NH_4^+ + HCOO^-$

Produced by **nucleophilic addition** of NH_3 with CO_2 :

 $2NH_3 + CO_2 \rightarrow NH_4^+ + NH_2COO^-$

in solid ices + catalytic effect of cosmic dust Theulé+ (2013), Potapov+ (2019)

To answer these questions we need:

- Kinetics of formation mechanisms obtained via theoretical + experimental studies to improve models of evolution of icy grains
- Observations: search for spectral signatures (JWST)

When, Where they formed?

- interstellar ices? and/or
- protoplanetary disk? and/or
- in the comet, during sublimation of ices?

INFLUENCES OF THE AMMONIUM SALTS

*NH*₄⁺ salts may potentially influence several properties of astrophysical ices

Chemical evolution

Aggregation of grains

Solid phase

- Once formed in the ice, can ionic solids catalyse **reactions on their surface**?
- How do the salts evolve when submitted to **irradiation** (UV/cosmic rays)?

Gas phase

- Adsorption/Desorption on ionic solids versus ices: different affinities? catalysis?
- **Sublimation/Decomposition** of the salts: production of molecules in gas phase

Stickiness/coagulation efficiency

- Salty-ice grains stickier than non-saltyice grains?
- Salt-pure or salt-coated grains stickier than ice or silicates/organics grains?

Solid form of Nitrogen

- NH₄⁺ salts are solid up to > 200 K
 - \Rightarrow providing N well inside the N₂ and NH₃ snow lines.

CONCLUSION AND PERSPECTIVES

- VIRTIS-M identified NH₄⁺ salts on the nucleus of comet 67P
- These salts may represent the dominant reservoir of N in this comet
- Potential implications in

- (Hänni+, EPSC-DPS 2019)
- Comae distributed sources of gaseous molecules (Mumma+, EPSC-DPS 2019)
- Cosmochemistry, for the cosmic cycle of nitrogen
- Planetary formation: role of these salts in accretion mechanisms?

Open questions:

- What are the counter-ions of NH_4^+ in comet 67P?
- What is their exact concentration in comet 67P?
- NH₄⁺ salts also present in other small bodies? in cosmo-materials?
- How, when and where did they formed?

SSHADE: THE EUROPEAN SOLID SPECTROSCOPY DATABASE INFRASTRUCTURE

<u>B. Schmitt</u>, Ph. Bollard, A. Garenne, D. Albert, L. Bonal, and the SSHADE Consortium Partners

IPAG & OSUG, Grenoble, France + 21 laboratories in 11 countries

(contact@sshade.eu)

- Vis-IR Spectroscopy and spectro-imagery are increasingly used in space missions to study the solid phases at their surface (ices, minerals, organic materials, ...).
- Infrared, Raman, fluorescence and X-ray micro-spectroscopies are also used to study planetary and cosmo-materials, in the laboratory and onboard landers and rovers.
- Laboratory spectra of a variety of natural or synthetic materials are needed to analyze the observations of solids at the surface or in the atmosphere of solar system bodies.

and many other databases...

What is SSHADE? <u>https://www.sshade.eu</u> + <u>https://wiki.sshade.eu</u>

SSHADE hosts a set of specialized databases provided by various research groups and dedicated to astrophysics, planetary & material sciences, and geosciences.

Content of SSHADE: Online since February 2018

The **SSHADE databases** cover laboratory, field and simulated spectral data including various levels of products (e.g. transmission, reflectance, optical constants, Raman, ...)

- ✓ Types of samples: synthesized or natural ices, minerals, rocks, organic and carbonaceous materials, terrestrial analogues, extra-terrestrial samples (meteorites, IDPs, Lunar soils, …).
- ✓ **Spectral ranges:** mostly covering the X, VUV, UV, Vis, Near/Mid/Far-IR & sub-mm.

The SSHADE Projet and Consortium

- ✓ SSHADE project: within VESPA activity of Europlanet 2020-RI
- ✓ SSHADE consortium: 23 partners in 21 labs from 11 countries
- ✓ SSHADE infrastructure host: OSUG Data Center (UGA).

STOPCODA database

IRAP (MICMAC team) - CNRS / Université Paul Sabatier, OMP, Toulouse **Expertise:** infrared spectra of cosmic dust analogues at low temperature.

DOCCD database

AlU Observatory / Laboratory Astrophysics team - Friedrich Schiller University, Jena **Expertise:** UV to FIR complex refractive indices of solid materials relevant for cosmic dust.

SSHADE interface : Search tools

The user can search spectral data or publications through two complementary forms:

- ✓ a simple 'Google-style' search bar
- ✓ a number of specialized filters to refine the search

SSHADE search tools for spectra: bar + filters

Interactive display for samples & spectra

GhoSST database

IPAG (Planetology team) - CNRS / Université Grenoble Alpes. OSUG, Grenoble **Expertise:** spectroscopy of solids of planetary and astrophysical interests: natural and synthetic solid samples with special focuses on low temperature ices & molecular solids, hydrated minerals, organics and carbonaceous materials, and cosmo-materials (meteorites, micro-meteorites & IDPs).

