Adapting heterogeneous catalysis calculations to the astrochemistry world

Françoise Pauzat

Laboratoire de Chimie Théorique (Sorbonne Université/CNRS) Teams from: LCT (Paris) LAM (Marseille) LERMA (Paris) ENSC (Rennes) Universitad de Valladolid (Spain) PhD contributions: M. Lattelais, M. Doronin, O. Ozgurel, M. Boland

> Financial supports from: PCMI (CNRS) PNP (CNRS) Sorbonne Université ACAV (IDF) COST (0805;1401)

Presence of solids in astrochemistry

- ISM : grains, bare or icy, all over the place .
- Solar system: a number of objects (moons and comets) covered with ices (H2O, CO, CO2, NH3...).

Role of solids in astrochemistry

- Trapping by adsorption : distortion of the observed abundances; reservoir of potential reactants.
- Energy provider or adsorber for reactions at surface; catalytic role by providing H radicals (case of water).
 - Protection of species into the bulk

Solid state approach

Quantum chemistry calculations:

- Density functional theory
- Periodic representation in three dimensions

Characteristics

- « Real solid »
- Kind of rigidity but can be accomodated
- Pay attention to base cell dimensions for no lateral interaction No edge effect as in cluster

 Pay attention to the vacuum dimension for surfaces studies (expensive)

Molecular crystals with solid state approach

- Periodic DFT (density functional theory) :
 - Exchange-correlation functional (PBE)
 - Hybrid functional : part of HF exchange question relevant for periodic as non periodic (cluster) approaches
- Example 1: adsorption energies on water ices for atoms & molecules
- Weak interactions: long-range van der Waals interactions and hydrogen bonding
 - Corrective scheme for dispersion by Grimme (2010): function D2 D3
 - Cluster: same problem
- Example 2: adsorption energies on water ices for atoms
 - Basis functions: code VASP plane wave basis sets
 - Avoid the correction of BSSE (basis set superposition error
 - Not the case for local basis sets (atomic basis sets)

Example 1: Dispersion versus Exchange interactions

Building an hybrid function

(PBE-D2) +	0% HF	25%HF	50%HF	Exp.
C	1.42	1.19	1.08	
Z	0.10	0.06	0.05	0.062
0	0.73	0.12	0.11	0.121
Si	1.10	0.98	0.87	
Ρ	0.10	0.05	0.04	
S	0.61	0.30	0.20	
02	0.127	0.113	0.107	0.092
N2	0.132	0.135	0.131	0.096

Adsorption energies (eV) on water ices

Example 2: Taking care of dispersion effects

(PBE+50% HF) +	No D	With D2	With D3	Exp.
U	0.974	1.08	1.21	
N	0.017	0.05	0.05	0.062
0	0.059	0.11	0.12	0.121

Adsorption energies (eV) on water ices

I- ADSORPTIONS on surfaces

Collaboration and check with experiments (TPD) *Example: CH3CN/CH3NC*

Trapping by adsorption : distortion of the observed abundances; reservoir of potential reactants.

Example: selective depletion of isomers Application: search for chiral molecules

Surface modeling versus experiment

Surface	CH3CN	CH3NC
α -quartz Experiment	460 ± 60	430 ± 50
lpha-quartz Theory	460	414
Crystalline water Exper.	565 ± 50	540 ± 30
Crystalline water Theory	558	545

Energies in meV

Bertin et al 2017, A&A 598, A18

Graphite surface	CH3CN	CH3NC
Experiment	440 ± 25	430 ± 25
Perfect HOPG	275 ± 30	255 ± 30
Damaged (holes)	310 ± 40	300 ± 40
Damaged (hydrog. holes)	390 ± 50	350 ± 50
Steps	480	440

Experiment: Temperature programmed desorption (TPD) Bertin et al 2017, A&A 608, A50

Nitrile versus Isonitrile on graphite

M. Bertin, M. Doronin, et al; A&A, 608, A50 (2017)

Selective depletion of isomers at ice surfaces

Homochirality: a signature of life, ...

I call any geometrical figure, or group of points, «chiral», and say it has «chirality», if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself. [Kelvin (1904)]

Life as we know it: Sugars D + Amino-acids L

Only one chiral molecule identified in the ISM (2016)

Although several of them are common in carbonaceous chondrites

Search for chirality: stability versus adsorption

Energy (to acetone) in kcal/mol Dipole moment in Debye

The only chiral molecule observed to-day in the ISM is not the most stable isomer of its family but has only 1 point of attach to the ice covering the grains, implying an adsorption energy of 10. kcal/mol

Predictions

Oxirane daughters

(I) (II) (IV) (V)

	(I)meth	hyl	(II)cya	ano (III)ethy	ne (IV)amin	o (V)formy	l -oxirane
/	30.		28.	59.	47.	38.	ΔE
	2.0		3.8	1.8	1.0	2.6	μ
	10.		11.	12.	15.	13.	Eads

(Energy in kcal/mol Dipole moment in Debye)

This suggests that (II) could be a good candidate for radio-detection

II- REACTIVITY on ices surfaces

- Provider of H or electrons:
 catalysis and cooperative effect
 Example: HCN/HNC isomerisation
- Provider/adsorber of energy and/or reactants *Example: reconstruction of H2O by OH + H2*

HCN/HNC isomerization

Cluster approach: water catalysis trend

Gas phase isomerization : barrier above 30 kcal/mol

Oxygens are almost motionless

	PBE	Hybrid	Ref[1]	Ref [2]
barrier (kcal/mol)	4.2	9.7	9.6	10.5

[1] Fabrice Gardebien and Alain Sevin J. Phys. Chem. A 2003, 107, 3925-334 Opt. MP2, E(CCSD(T)/6+31G(d,p))
 [2] Denise M. Koch, Céline Toubin at al. J. Phys. Chem. C 2007 111, 15026-15033 B3LYP//6+31G(d,p)
 (OPT BSSE ZPE)

From cluster to « solid »

Adapted from D. Koch et al. J. Phys. Chem. C 2007 111, 15026

HCN/HNC isomerization

Periodic approach: water catalysis confirmation

$\Delta E_{TS} = 2.5 \text{ kcal/mol}$

Cooperative effect visible

Reactivity with dissymetric reactants

Intervention of the medium to orientate the first step through adsorption of one or the other of the reactants

 \rightarrow Dependant of environment

Example: OH +H2

Step1: adsorption

Step2: reactivity

 \rightarrow Tunnel effect

H2 attached a no barrier reaction

III-Inside the icy BULK

Alcali in Europa's exosphere: an endogenous scenario

1

Ö. Özgürel et al. ApJ Letters, 865,2,L16 (2018)

2

Origin of O₂ in comet 67P/ Churyumov-Gerasimenko

O. Mousis et al. ApJLetters 823, L41 (2016)

Alcali in Europa's exosphere an endogenous scenario

Detections and conjectures

Simultaneous detections in Europa exosphere → Na/K = 25 ± 2 (Brown, 2001) ≈ 30 (Trafton, 1981)

Cosmic abundances Na/K = 20

Exogenous sources:

Volcanism of Io Na/K (Io) = 10 ± 3

Meteoritic bombardment Na/K = 13 ± 3

Endogenous sources:

Earth seawater Na/K = 45

Io & Europa transit Jupiter

From rocks to surface: a surprising journey in time and space

Definitions

Adsorption

Substitution

Inclusion

From charged to neutral

		×	- ×	X	x
Atom	Adsorption (over H)	Adsorption (over O)	Substitution (surface)	Substitution (bulk)	Inclusion
Na	0.10 / 0.2	0.41 / 0.3	0.86 / 0.54	1.02-1.10 / 0.8	0.06 / 0.9
K	0.16 / 0.2	0.60 / 0.4	0.86 / 0.55	0.91-1.17 / 0.8	0.22 / 0.9
Ca	0.20 / 0.2	0.98 / 0.3	1.41 / 0.70	1.54-1.71 / 0.9	0.26 / 1.31

Stabilization energies in eV / Charges in electron Bader charge analysis

Conclusion

• Na & K :

- similar behaviors in water ice
- different concentrations in liquid water

• Ca :

- very stable in ice
- lower concentration than Na but higher than K
- Presence of subsurface ocean
 No need for exogen contamination (Io)
 Process based on metal ions saturation in the deep ocean

Comet 67P

Observational context

Detection of O₂ in comet 67P/C-G by ROSINA on board of ROSETTA (Bieler et al. 2015)

local 0,/H,0 abundances in the 1%–10% range a mean value of 3.80 ± 0.85%

Re-analysis of the **1P/Halley** data from Giotto Neutral Mass Spectrometer (Rubin et al. 2015) **On with abundance of 3 1 1 7 %** with respect to H₂O

Both observations \rightarrow

O₂ might be a rather common parent species in comets

No significant variation observed for O₂/H₂O ratio in the coma during the time of the mission

 \rightarrow primordial origin

Correlation with H₂O release for O₂ emissions

Computational results

Presence of O2 should not perturbate the ice structure until it is ejected in the coma

No vacancy: with no H2Oremoved we found **no stabilization** for the inclusion of O2 in the hexagonal lattice

One vacancy: with one H2O removed and replaced by **one O2**, we have a substitution structure with a meaningless stabilization (0.001 eV)

Two ad more vacancies: with 2,3 and 4 adjacent H2O removed from the lattice, we obtain the formation of well-defined cavities of different shapes, able to accomodate one O2 with stabilization energies of 0.2-0.3 eV

Dimers of O2 can also remain embedded in such cavities with stabilization energies of **0.4-0.5 eV**

Accordance with observations

Strong interaction between O₂ and the water bulk surrounding

O₂ trapped inside durably

Strongly-correlated escape of O₂ and H₂O

Average proportion of abo

calculated as a ratio of the number of neighboring H_2O molecules to one O_2 molecule considering the minimum dimension holes necessary to keep O_2 trapped into the bulk

Can be less, depending on the occupation by O_2

For holes containing a **dimer of O₂**, the proportion doubles 8% close to the maximum 10% observed

(Mousis et al. ApJL 823, L41, 2016)

Message to go:

Solid state methods and codes (VASP, CRYSTAL, QuantumExpresso, CP2K......) are quite helpful for understanding astrochemistry mechanisms related to ices and other interstellar surfaces as silicated and carbonaceus ones

but

As these codes are being used in conditions quite different from the ones they have been set up for, be careful in their interpretation and extension to unusual situations!