

Formation du glycéraldéhyde par des processus radicalaires dans des analogues de glaces: approche mécanistique

Yohann Layssac, <u>Fabrice Duvernay</u>, Albert Rimola, Alejandro Gutiérrez Quintanilla, Thierry Chiavassa

Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM)

Aix Marseille Université (AMU), Centre de St Jérôme, Marseille

Les glaces interstellaires

Deux phases distinctes : gazeuse (99% en masse) et solide (1% en masse)

Environnements denses, froids (T<20 K)

Crédit: NASA/ESA Hubble héritage

Chimie de surface sur les grains interstellaires

Chimie de surface sur les grains interstellaires

Résidus organiques

« Glaces primitives»

Composés volatiles

Réchauffement (10-200 K)

UV et rayons cosmiques

- Réactions neutre-neutre
- Réactions radical-radical
- Réactions radical-neutre

« Glaces primitives» Composés volatiles

 Réchauffement
 Réchauffement

 (10-200 K)
 Vet rayons cosmigues

Réactions de surface et de volume

- Réactions neutre-neutre
- Réactions radical-radical
- Réactions radical-neutre

« Glaces primitives»

Composés volatiles

UV et rayons cosmiques

Réactions de surface et de volume

- Réactions neutre-neutre
- Réactions radical-radical
- Réactions radical-neutre

Formation des MOC

Résidus organiques

Gibb et al., ApJ supl.series., 151, 35 2004 Boogert et al. ApJ. 678, 985, 2008

Phase solide

Phase gazeuse

Tercero et al, A&A, A96, 2010.

Phase solide

Phase gazeuse

Phase solide

Mécanismes de formation des MOC

Jorgensen et al. 2016; Coutens et al. 2015

Crovisier et al. 2004 ; Goesmann et al. 2015 Altwegg et al. 2017

Cooper et al. Nature 2001

Formation possible dans les glaces interstellaires? Mécanisme de formation?

Fedoseev et al. MNRAS 2015

Temperature, K

Fedoseev et al. MNRAS 2015

Irradiation du Methanol CH₃OH

Abou Mrad et al., MNRAS, 2016, 458,1234

Irradiation du Methanol CH₃OH

Réaction de Formose:

- Formaldéhyde est le précurseur clé dans le formation des sucres
- Formation par hydrogénation du CO ou la photolyse du méthanol

$$CO \xrightarrow{H} O \xrightarrow{O} H \xrightarrow{O} H \xrightarrow{O} H \xrightarrow{O} H \xrightarrow{O} H \xrightarrow{H} O \xrightarrow{H} H \xrightarrow{H} O \xrightarrow{H} H_2C \xrightarrow{-OH} \xrightarrow{H} H_3C \xrightarrow{-OH} H_3C \xrightarrow{-OH} O \xrightarrow{H} O \xrightarrow{H}$$

Irradiation d'analogues de glace contenant du formaldéhyde: Formation des sucres et polyols

6

6

Identification par spectroscopie IR: MeOH, GA, GCA, EG, GCO

Références 70 eV

Mécanisme de formation? Etudes en matrices cryogéniques Calculs théoriques

H₂CO / Ar=2/1000

→ Principalement MeOH, GA et GCA
 → La réactions HCO +H₂CO conduit aux aldoses (GA et GCA)
 → Pas d'EG ni de GCO (•CH₂OH probablement nécessaire)

Mécanisme de formation du GA: HCO + H₂CO

Mécanisme de formation du GA: HCO + H₂CO

Formation du GCA : HCO+ GA

Formation du GCA : HCO+ GA

- → GA, GCA et EG, GCO formées en analogues de glaces interstellaires contenant du formaldéhyde
- → Contraintes apportées concernant l'étude des mécanismes:
- Mécanisme radicalaire du type radical-H₂CO
- La formation des aldoses (sucres) est initiée par le radical HCO
- La formation des polyols est probablement initiée par le radical CH₂OH (expériences/calculs complémentaires nécessaires)

Fabien Borget

Pr. Thierry Chiavassa

Nathalie Pietri

Fabrice Duvernay V. Vinogradoff

ASTR

ire PIIM (Aix Marseille Universi¹

Louis D'hendecourt

Grégoire Danger

Alexander Ruf

Alejandro Gutierrez Quintanilla

Yohann Layssac

Adeline Garcia

Thomas Javelle

