Linking ice observations to laboratory studies of water ice structure

Jennifer A. Noble

CNRS, Aix-Marseille Université

Formation and evolution of water ice in star forming regions

Influence of mixing state on IR spectra of ices

Influence of processing on IR spectra of ices

Formation and evolution of water ice in star forming regions

Influence of mixing state on IR spectra of ices

Influence of processing on IR spectra of ices

Ice formation and evolution during the star formation process

Dulieu+ 2013 Scientific Reports, Brown & Burke 2010 PCCP, Rab+ SpaceSciRev, 2016

Observing ices in the ISM and solar system

Direct methods

Indirect methods

Alves+ Nature 2001, Whittet+ A&A 1996, Qi+ Science 2013, Altwegg+ ARAA 2019

Observing ices in the ISM and solar system

Direct methods

Indirect methods

IR spectrum of embedded protostar NGC 7538 IRS9

Alves+ Nature 2001, Whittet+ A&A 1996, Qi+ Science 2013, Altwegg+ ARAA 2019

Observing ices in the ISM and solar system

Direct methods

IR spectrum of embedded protostar NGC 7538 IRS9

Observations of dust & gas emission towards TW Hya disk

Remote sensing of comet 67P/Churyumov-Gerasimenko

Alves+ Nature 2001, Whittet+ A&A 1996, Qi+ Science 2013, Altwegg+ ARAA 2019

Ice evolution traced through IR adsorption band profiles

3 μm band (clouds, cores, envelopes)

THz modes (disks)

Boogert+ ARAA 2015; Noble+ ApJ 2013; Min+ A&A 2016

Evidence from laboratory IR spectroscopy

• 3 µm (stretch) and 50 µm (lattice) most sensitive to ice structure

Ioppolo+ Faraday Discuss. 2014

Evidence from laboratory IR spectroscopy

Noble+ to be submitted, Michoulier private comm, Cuppen private comm.

Structure of ASW determined in the laboratory

Devlin & Buch J. Phys. Chem. 1995; Bartels-Rausch + Rev. Mod. Phys. 2012

How porous is amorphous ice upon formation?

Dulieu+ 2013 Scientific Reports; Linnartz+ 2015 Int Rev Phys Chem

How porous is amorphous ice upon formation?

- Water ice likely to be compact ASW upon formation
- Search for dOH feature at 2.8 μm / 3720 cm^{-1}

Dulieu+ 2013 Scientific Reports; Linnartz+ 2015 Int Rev Phys Chem

Formation and evolution of water ice in star forming regions

Influence of mixing state on IR spectra of ices

Influence of processing on IR spectra of ices

Influence of mixed ices on water ice surface

Rowland+ J Chem Phys 1991; Keane+ A&A 2001

Simulations of the adsorption of PAHs on ice surfaces (multi-method)

Classical MD simulation (ice + PAH) (TIP4P/2005 Force Field + GOCPAC charges)

Eric Michoulier, PhD thesis (C. Toubin & A. Simon)

Electronic structure calculation (DFTB 160 H₂O + 1 Coronene)

Sampling of 50 geometries

Binding energy and adsorption angle distribution

Binding energy increases with PAH size

Adsorption geometry depends on ice structure

Michoulier+ 2018a PCCP, Michoulier+ 2018b PCCP

Adsorption impacts ice surface mode spectroscopy

Formation and evolution of water ice in star forming regions

Influence of mixing state on IR spectra of ices

Influence of processing on IR spectra of ices

Energetic processing of ices in star formation cycle

How does amorphous ice relax injected energy?

Brown & Burke 2010 PCCP

MIR-THz irradiation of water ices with tuneable IR lasers

Ioppolo+ Faraday Discuss. 2014

Selective irradiation of pASW vibrational modes

- Loss and gain of oscillators similar for energy injection into different modes
- Amorphous ice exhibits restructuring

Noble, Cuppen, Redlich, Coussan & Ioppolo to be submitted.

Synthetic ice spectra from optical constants

Noble, Cuppen, Redlich, Coussan & Ioppolo to be submitted.

Oscillator fitting method

Smit et al. J. Phys. Chem. Lett. 2017

Oscillator fitting method

Noble, Cuppen, Redlich, Coussan & Ioppolo to be submitted.

Modelling energy relaxation in ASW

Noble, Cuppen, Redlich, Coussan & Ioppolo to be submitted.

Modelling energy relaxation in ASW

Noble, Cuppen, Redlich, Coussan & Ioppolo to be submitted.

Future needs for astrochemistry of ices

• **Simulations** of molecular **orientation** and energy **dissipation** dynamics necessary to fully integrate ad-/desorption and reactivity into **astrochemical models**

• **JWST "IceAge" ERS program** will study objects at all stages of **evolution** from molecular cloud to protoplanetary disk

Cha 1 field McClure+

Thanks to all collaborators and funding agencies

Joëlle Mascetti, Christian Aupetit

Eric Michoulier, Céline Toubin

Aude Simon, Fernand Spiegelman

Sergio Ioppolo, Anita Dawes, Nigel Mason, Helen Fraser

Stéphane Coussan, Pascale Roubin, Céline Martin

Herma Cuppen, Britta Redlich

CNRS, Royal Commission for 1851 Exhibition, ANR, COST, FLUENCE, Royal Society, EPSRC